Around the start of the year, Carnegie Mellon researchers used a robotic system to run dozens of experiments designed to generate electrolytes that could enable lithium-ion batteries to charge faster, addressing one of the major obstacles to the widespread adoption of electric vehicles.
The system of automated pumps, valves, and instruments, known as Clio, mixed various solvents, salts, and other chemicals together, then measured how the solution performed on critical battery benchmarks. Those results were then fed into a machine-learning system, known as Dragonfly, that used the data to propose different chemical combinations that might work even better.
In the end, the system produced six electrolyte solutions that outperformed a standard one when the Carnegie researchers placed them into small test cells, according to a new paper in Nature Communications. The best one showed a 13% improvement over the top-performing baseline battery cell.
Developing better electrolytes is crucial for improving the performance, safety, and cost of batteries. Faster-charging batteries are especially important for making electric cars and trucks more appealing, as they can ease the annoyance of long delays at charging stations.
Recent Comments